Snapdragon 800 (MSM8974) – The Performance Beast

 This is Qualcomm’s new flagship SoC with four Krait 400 CPUs at up to 2.3 GHz, Adreno 330 graphics, and the latest modem IP block with Category 4 LTE. Qualcomm is finally ready to show off MSM8974 performance on final silicon and board support software, and invited us and a few other publications out to San Francisco for a day of benchmarking and poking around. We looked at MSM8974 on both the familiar MSM8974 MDP/T, a development tablet used both by Qualcomm and 3rd parties to develop drivers and platform support, and the MSM8974 MDP phone, both of which have been publicly announced for some time now.

S800-8957_678x452

The tablet MDP is what you’d expect, an engineering platform designed for Qualcomm and other third parties to use while developing software support for features. Subjectively it’s thinner and more svelte than the APQ8064 MDP/T we saw last year, but as always OEMs will have the final control over industrial design and what features they choose to expose. Display is 1080p on the tablet and 720p on the phone, a bit low considering the resolutions handset and tablet markers are going for (at least 1080p on phone and WQXGA on tablets) so keep that in mind when looking at on-screen results from benchmarks.

1

Snapdragon 800, nee MSM8974 is built on TSMC’s 28nm HPM (High Performance for Mobile) HK-MG, as opposed to 28nm LP polysilicon (low power). The result are higher clocks for CPU, from 1.5–1.7 GHz on Krait 200–300 which was 28nm LP, to 2.2–2.3 GHz on Krait 400 on 28nm HPM. The jump between Krait 200 and Krait 300 brought higher clocks and also a jump in IPC, this time around Krait 400 is essentially a Krait 300 implemented on 28nm HPM, which means some relayout. There’s also a faster L2 cache on Krait 400.

Performance400_575px

These are final clocks on MSM8974 – Krait 400 runs its four cores at up to 2.3 GHz, though some lots will come at 2.2 GHz. GPU on MSM8974 is Adreno 330 which runs at 450 MHz and brings some architectural improvements over Adreno 320.

Screenshot_2013-06-18-15-21-51_575px

On the video side, MSM8974 is capable of encoding UHD 4K (3840 x 2160) 30 FPS video at up to 120 Mbps H.264 High Profile, and is capable of playing back the same file. Qualcomm had a demo going showing this mirrored on the latest Sony 4K UHD TV as well over microHDMI. Recorded  video sample on YouTube is here. True to their word the video I grabbed is 120 Mbps and 3840 x 2160, framerate was just over 25 FPS but I’m not sure if the demo was setup for 30 FPS capture. MSM8974 has the hardware encoder for H.264 but not HEVC H.265, that’s implemented in software.

Screen Shot 2013-06-18 at 4.49.26 PM_575px

CPU Performance:

The state of CPU performance testing under Android is unfortunately still quite broken. We’re using a mix of browser based tests with Java & Native apps (AndEBench).

The key comparisons to look for are the Snapdragon 800 MDP/T vs. the Exynos 5 Octa (4 x ARM Cortex A15s) based Galaxy S 4 (SHVE300S), the Exynos 5 Dual (2 x ARM Cortex A15s) based Nexus 10 tablet and any of the Snapdragon 600 based smartphones (HTC One/T-Mobile Galaxy S 4) running two Krait 300s at 1.7/1.9GHz.

55611

Krait 400 seems to do very well against ARM’s Cortex A15, trading positions in terms of performance depending on the test. As these are browser based benchmarks there’s a big software component to variability that prevents big conclusions from being made here, but it’s clear that Snapdragon 800 is in a similar performance class to current Cortex A15 based designs.

The Java and Native client AndEBench tests echo what we’ve seen elsewhere: Snapdragon 800 can definitely be quicker than ARM’s Cortex A15, and at least is in a similar class.

THE GREAT EQUALIZER: SNAPDRAGON 800 VS. PC GPUS:

We’ve been tracking mobile GPU progress compared to entry level (and older desktop) PC GPUs now that we have cross-platform 3D benchmarks that run under both Android and Windows 8/RT. The data below has been updated to include Snapdragon 800/Adreno 330. Adreno 330 definitely moves up the list, getting dangerously close to Kabini at times. It’s still not at Ivy Bridge levels of GPU performance yet, but keep in mind we’re talking about a platform with a much lower TDP.

 

55636

55637

55638

55639

Final Words

Qualcomm’s Snapdragon 800 is quite possibly its most ambitious SoC to date. The goal? To drive absolute performance while maintaining power efficiency. While Snapdragon 600 was clearly about delivering evolutionary gains in performance, Snapdragon 800 intends to compete with ARM’s Cortex A15 and Intel’s Bay Trail platform.

On the CPU performance front, Snapdragon 800’s 2.3GHz Krait 400 cores do appear to hold their own quite well against ARM’s Cortex A15. In some cases ARM holds the advantage, while in others the higher clocked Krait 400 takes the lead. We still have the question of power to answer, but Qualcomm bets it can deliver A15-like performance without A15-like power thanks to the 28nm HPM process at its foundry partners.

Qualcomm didn’t have any power demos setup, so power analysis and battery life performance will have to come at a later date, but the claim is better performance at equivalent platform power as Snapdragon 600.

On the GPU side, we have a new king. Adreno 330 delivers huge performance improvements over Adreno 320 and everything else we’ve tested thus far. Snapdragon 800 is the new benchmark to beat. It’s very clear to me why many tablet designs scheduled for later this year are based on Snapdragon 800 silicon.

Courtesy:http://www.anandtech.com

[youtube http://youtu.be/8FQsMDv0ytY&w=640]

Post By

Shiva Chaitanya

Leave a Reply

Your email address will not be published. Required fields are marked *